

NoCap: Fact Checking with AI

Team
Anthony Ciero aciero2022@my.fit.edu

Thomas Chamberlain tchamberlain2023@my.fit.edu
Joshua Pechan jpechan2023@my.fit.edu

Varun Doddapaneni vdoddapaneni2023@my.fit.edu

Advisor
Marius Silaghi msilaghi@fit.edu

Requirements Document

mailto:aciero2022@my.fit.edu
mailto:tchamberlain2023@my.fit.edu
mailto:jpechan2023@my.fit.edu
mailto:vdoddapaneni2023@my.fit.edu
mailto:msilaghi@fit.edu

Table of Contents
1. Introduction

1.1 Purpose
1.2 Scope
1.3 Definitions, acronyms, and abbreviations
1.4 References
1.5 Overview

2. Overall description
2.1 Product perspective
2.2 Product functions
2.3 User characteristics
2.4 Constraints
2.5 Assumptions and dependencies

3. Specific Requirement
​ 3.1 Functional Requirements
​ 3.2 Interface Requirements
​ 3.3 Performance Requirements

1.​ Introduction
1.1 Purpose

The purpose of this document is to describe the “NoCap” project, a fact
checking AI tool. This document also lists out the requirements needed
such as functional requirements, interface requirements, and performance
requirements. This document is for users of the NoCap application so they
can better understand the specifications and features of the website.

1.2 Scope
The goal of NoCap is to create a website where users can input a piece of
text or a link to any article and our AI will read the article and check for
true and false information. The AI will also give every article an
authenticity score for users to understand how trustworthy an article is,
with help from authenticity graphical representation. Our website will then
see if this article is already in our database and if not, will store it along
with its authenticity score based on the publisher. This will allow other
users to view articles trustworthiness before reading.

1.3 Definitions, acronyms and abbreviations
​ AI: Artificial intelligence
​ API: Application Programming Interface
​ URL: Uniform Resource Locator
​ AWS: Amazon Web Services
​ LLM: Large Language Model
​ CI/CD: Continuous Integration/Continuous Deployment
​ WCAG: Web Content Accessibility Guidelines
​ IEEE: Institute of Electrical and Electronics Engineers
1.4 References
​ IEEE Standard for Software Requirement Specifications
1.5 Overview

This document further explains the product perspective and functionalities,
user characteristics, constraints, assumptions/dependencies, and specific
requirements, namely functional, interface, and performance specifications

2.​ Overall Description
2.1 Product perspective

NoCap is a website that allows users to paste an article URL, where our
AI will read the article and give the article an authenticity score and report.
The articles can then be saved into the database and aggregate scores for
the publishers will be public to view. This allows new users to see other
articles and publishers that may be spreading misinformation.

2.2 Product Function
​ 2.2.1 URL Detection

The website will allow the user to paste a URL into a box. Users will
submit this URL via a button.

​ ​ 2.2.2 Raw Text Detection
The user will be able to input raw text instead of an article URL.
Users will submit via the same button.

​ ​ 2.2.3 Text Detection with AI
The AI will read the given article and determine which sections of
the article are fact or fiction.

​ ​ 2.2.4 Authenticity Score and Report
The AI will then give the article an authenticity rating out of 100, 1
being the lowest. It will also give a small report on which sections it
believes to be true or false.

​ ​ 2.2.5 Add Article to Database
After checking and rating the article, if the article has not been
checked before, add the article to a list based on the publisher.

2.2.6 Authenticity Graphical Representation
Based on the articles and authenticity reports in our database,
users can view a bar graph showing which words or topics are
believed to be true or false and how often they show up across the
articles.

​ ​ 2.2.7 Publisher Aggregate Scores
Publishers themselves will be given an authenticity score by
averaging all the authenticity scores of the articles in the database.

​ ​ 2.2.8 Viewing Publisher & Article Scores
Users will be able to view all the articles published sorted by
publishing company and will be able to see which articles are
considered more false or more true based on the highest true score
starting at the top.

2.3 User characteristics
The main users are people who are looking for information about a topic
and want to verify that information as true. This includes “news

consumers” who want to identify misinformation/biased reporting and
“casual readers” who want to quickly fact check a source.9

2.4 Constraints
2.4.1 Website Internet Connection

○​ Since the system depends on cloud-based AI models and real-time
API requests and database searches, it cannot function offline.
Users must have an active internet connection to submit text/URLs
and receive authenticity scores

2.4.2 API Dependency (rate limits and pricing)
○​ The platform depends on external APIs for AI-driven text analysis.

These services have rate limits that may restrict the number of
requests per second/minute, as well as cost implications per
request. Both need to be factored into system design, caching
strategies, and usage policies to avoid service interruptions or
excessive operating expenses.

2.4.3 Response Speed
○​ Users expect near-instantaneous results. System performance is

constrained by the time required for external API calls, backend
processing, and network latency. To maintain usability, the system
must optimize response speed through efficient request handling,
load balancing, and caching where possible.

2.4.4 Scalability
○​ The system must be able to handle increased user traffic as

adoption grows. Scalability will be constrained by cloud
infrastructure costs. Proper use of AWS auto-scaling and serverless
functions will be necessary to meet peak demand without
significant downtime.

2.4.4 Processing Limits
○​ Each API call and backend service has limits on the size and

complexity of data it can process. Full-article analysis requires
reading, understanding, and scoring with potentially thousands of
words per request. This creates constraints around processing
speed, as the system must balance depth of analysis with quick
turnaround times. There will need to be many optimizations to
ensure comprehensive reports in reasonable time which could
include summarization, parallel processing, and optimized prompt
design.

2.5 Assumptions and dependencies
●​ The user has a device to open the website
●​ The user has an available wifi connection

●​ The user has a URL to the article they want to check
●​ The user has surface level experience with how to work their device and

navigate to a website.

3. Specific Requirement
​ 3.1 Functional Requirements

3.1.1 Amazon Bedrock Integration
○​ Used to handle AI model interface. The system will send text or

URLs to the AI model hosted on Bedrock, which will process and
return insights like authenticity scores and reasons for them. This
ensures scalability and avoids building in-house model hosting

3.1.2 Text/URL entry
○​ Users can input either raw text or a webpage url. The system will

parse the input, run it through the analysis pipeline and return an
authenticity score.

3.1.3 Authenticity Score
○​ Each input will be given a calculated authenticity score which will

represent the likelihood of reliability and misinformation. This helps
users quickly gauge trustworthiness at a glance but also allows for
more in depth analysis.

3.1.4 Publisher Aggregate Score
○​ Beyond individual articles, the database will store and maintain a

record of publishers and compute an aggregate score based on all
the submitted content. This provides users context on the historical
credibility of a source.

​ ​ 3.1.5 Publisher Aggregate Ranking
○​ The website displays a list of major publishers/news sources (CNN,

BBC, Reuters, etc) and ranks them based on the aggregate scores
of each publisher. This will be sorted from high (most reliable) to
low (least reliable).

3.1.6 Chrome Extension
○​ A browser extension will allow users to analyze articles directly on

the web without switching to the website. They would only need to
visit a site and the chrome extension would provide an authenticity
score and a snippet of the reason behind it.

​ ​ 3.1.7 Database
○​ A database that stores scores for saved articles. This database will

be referred to whenever a user inputs an URL. The URL is checked
with the database, and if it already exists, that score is used.

3.1.8 WCAG Accessibility Guidelines met
○​ The website meets the WCAG AA standards of web accessibility,

ensuring handicapped individuals can make use of the website.
This includes tabability, accessible color contrasts, and easily
readable text.

3.1.9 GitHub CI/CD pipeline
○​ Application has CI/CD pipeline from the GitHub repo, allowing any

changes to be automatically deployed.
​ 3.2 Interface Requirements

3.2.1 Home Page
○​ The entry point for users with quick access to text and URL input,

navigation, and recent analyses. This will act as a dashboard for
the application.

3.2.2 Rating Page
3.2.2.1 Overall Score

●​ A visual indicator on top of the numerical score.
Red for 0-50 (Likely False)
Yellow for 51-75 (Questionable)
Green for 76-100 (Reliable)

3.2.2.2 Details of the Analysis
●​ For each prompt, the page shows justification for why it was

scored the way it was. Summarizing claims in the data and
aligning it with publicly available data and seeing if the
claims align or are lacking cited sources. Additionally it
should point out biased words such as “disastrous” or
“catastrophic”.

3.2.3 Aggregate Page
○​ Provides an overview of publishers and their historical credibility.

This page aggregates authenticity scores across multiple articles
from the same publisher, showing a cumulative score. It can also
include trends over time comparisons between publishers, and
filtering/search features.

3.2.4 Extension Page
○​ A lightweight version of the analysis interface designed for the

chrome extension. It will show the authenticity score and a
summary directly in the browser without requiring the user to visit
the main site. There will be a link to the main site if more detail is
requested. This page will prioritize speed and clarity since it is
being used in an in-context setting.

3.2.5 Multi-Browser Compatibility
○​ The website should be fully functional and visually consistent

across all browsers and devices.
​ 3.3 Performance Requirements
​ ​ 3.3.1 Speed

●​ Pages load under 5 seconds

●​ Analysis time: Ratings generated in under 30 seconds
●​ Article checking: Checking if an article has been rated before

should happen under 10 seconds
​ ​ 3.3.2 Scalability(early version)

●​ Be able to handle ~100 requests an hour
​ ​ 3.3.3 Reliability

●​ If the API fails, the website should return an error message similar
to (“Unable to analyze article, try again later”).

​ ​ 3.3.4 Usability
●​ The website should be compliant with the WCAG 2.1 AA guidelines

